

Motivations for EP

- Environmental considerations
 - lower carbon footprint
 - reduced pollutants (NO_x, particulates)
 - noise
- Longer life, lower maintenance costs
- Scaling to smaller vehicles
 - regional transportation, urban mobility
- Distributed propulsion, airframe integration
 - alternative to control surfaces
 - boundary layer ingestion and increased aircraft L/D
- · Long duration flights, e.g. HALE
 - surveillance, communications,...

BAE

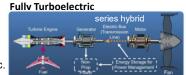
AE4803

Lecture Goals

- Introduce EP nomenclature and architectures
- Define some metrics for evaluating EP systems
- Describe various EP system components
 - how they operate
 - current performance metrics and their implications for EP aircraft
 - advances in EP technology

Electric/Hybrid Propulsion -4 Copyright © 2018, 2019, 2021, 2022 by Jerry M. Seitzman. All rights reserved

EP Nomenclature for Aircraft


- All-electric propulsion
 - 100% of energy and thrust from elec. (e.g., batteries, supplying electric motor driving propeller)
- Hybrid electric propulsion
 - part of energy sourced and/or thrust produced from electric
 - · e.g., turbofan (fuel energy and non-elec. thrust generation) combined with propellers driven **Hybrid Powertrain** by battery powered motors

hybrid electric powertrain

· electrical and non-elec. sources used to turn same shaft

turboelectric propulsion

- turbine engine power either fully or partially diverted to drive elec. gen. for propulsion (no batteries)
- series vs. parallel hybrid
 - · all power delivered to propulsor elec. vs mechanical delivery from fuel

Huff et al., NASA

AE4803

Copyright © 2018, 2019, 2021, 2022 by Jerry M. Seltzman, All rights reser

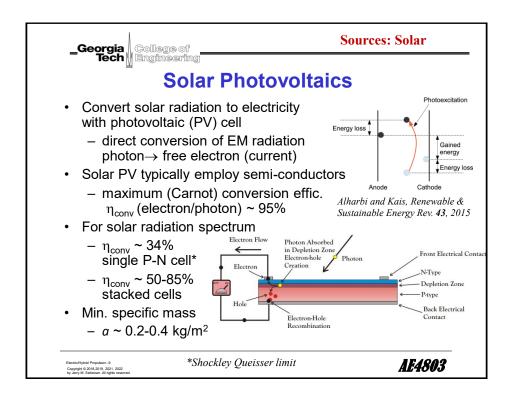
Electric Propulsion Components

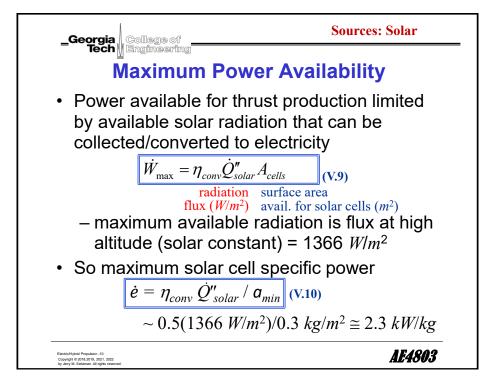
- Source
 - solar cells, batteries, fuel-cell, electric generator driven by heat engine, ...
- Power electronics and transmission
 - voltage increase and conversion (e.g., rectifier $AC \rightarrow DC$; inverter $DC \rightarrow AC$), power controls, power bus (distribution), ...
- **Motors**
 - AC synchronous, brushless DC, switched-reluctance, superconducting, ...; and motor controllers
- Propulser/Thruster
 - propeller, ducted fan, ...

EP Performance Considerations

- Some considerations for evaluating propulsion components and systems
 - mass
 - contribute to aircraft's TOGW (take-off gross weight)
 - volume or area
 - · impacts aircraft size
 - maximum power and turndown ratio
 - · determines deliverable thrust
 - energy storage
 - · controls aircraft range

Electric/Hybrid Propulsion -7 Copyright © 2018, 2019, 2021, 2022 by Jerry M. Seltzman. All rights reserved AE4803


EP Performance Metrics


- Can combine these to produce various performance metrics
- (V.8)

```
specific energy (e) \equiv energy storage/mass energy density (\bar{e}) \equiv energy storage/volume specific power (\dot{e}) \equiv maximum power/mass
```

- specific mass (a) ≡ mass/area
- For comparison, some metrics for typical jet engine propulsion systems
 - $-e_{\text{jet fuel}} \sim 43 \, MJ/kg$
 - $\dot{e}_{\text{turbofan}}$ ~ 10-30 kW/kg

Electric/Hybrid Propulsion -8
Copyright © 2018, 2019, 2021, 2022
by Jerry M. Seltzman, All rights reserve

_Georgia | College of Tech | Engineering

Sources: Solar

Commercial Aircraft Scaling

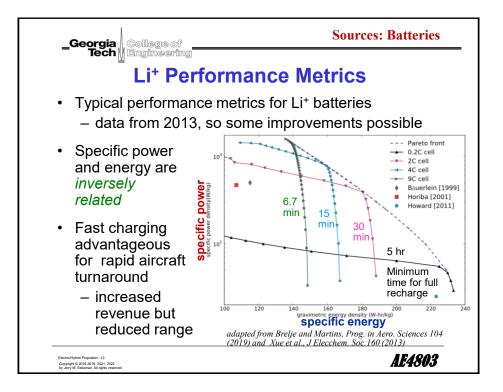
- **Example 737 size vehicle**
 - wing surface area, 102 m²
 - current CFM-56 engines (2) must supply ~50MW increase in flow KE to meet take-off thrust
- Assuming 100% coverage with PV cells (neglects area between cells, ...) and maximum solar flux

$$\dot{W}_{max} = 0.5 (1366 \ W/m^2)(102 \ m^2) = 70 \ kW$$

 $m = \dot{W}_{max} / \dot{e} = 70 kW / 2.3 kW / kg = 30 \ kg$

- Replacing medium scale commercial aircraft with solar electric power requires at least 700× increase in propulsive efficiency and/or vehicle lift-to-drag ratio
 - solar as sole power source viable for light (but not necessarily small) aircraft
 - advantage at high altitude (above cloud coverage)

Copyright © 2018,2019, 2021, 2022 by Jerry M. Seltzman. All rights resen


AE4803

Sources: Batteries

Li Ion Batteries

- Li ion (Li⁺) currently, leading battery technology for propulsion (and many other applications)
- During cell discharge
 - oxidation reaction at (-) electrode, Li+ removed and migrates across electrolyte to (+) electrode
 - to balance charge. same number of e-travel
- through the external circuit www.jmbatterysystems.com/technology/cells/how-cells-work
 - simultaneous electrochemical reduction reaction proceeds at (+) electrode; e- from external circuit and Li+ recombine
- During charging, flow of Li⁺ (and e⁻) reversed
- Heat dissipated in both modes, requires thermal management

_Georgia | College of Tech | Engineering

Sources: Batteries

Li⁺ Battery - Jet Fuel Comparison

Compare metrics to current aircraft propulsion

Metric	Li lon	Jet-A/Turbofan
e (MJ/kg)	0.35 - 0.9	43*
\bar{e} (MJ/L)	0.9 - 2.2	34*
ė (kW/kg)	0.1 - 1.0	10-30**

comparable to solar at lower altitudes

- compared to fuel, batteries store ~20-100× less energy (per mass or volume) AND they do not lose mass during flight ⇒ range reduction
- battery specific powers ~10-100× below current propulsion for moderate-sized commercial aircraft
- high generator efficiency and low motor mass compared to engines can't currently offset this

Electric/Hybrid Propulsion -14
Copyright © 2018,2019, 2021, 2022
by Jerry M. Seitzman, All rights reserve

*assumes negligible mass of fuel tank and fuel pump
**commercial turbofans

_Georgia | College of Tech | Engineering

Sources: Batteries

Commercial Aircraft Scaling

- 737 example
 - 50 MW power requirement at takeoff (TO)

$$\dot{W}_{battery} = m_{battery} (\dot{e}) \ge \dot{W}_{TO}$$
 midrange for reasonable e
 $m_{battery} \ge \dot{W}_{TO} / \dot{e} = 50 MW / (0.5 kW/kg)$
 $\ge 100,000 kg$

- maximum gross weight @TO only ~80,000 kg
- Using current batteries as only energy source limits EP to low power (thrust) vehicles
 - $\Rightarrow kW$ class vehicles
 - unmanned (moderate speed) drones, GA aircraft, urban air taxis,...
 - e.g., $10kW \Rightarrow \sim 20kg$, 15 L (< 1ft³) volume of insulation, cooling,...

Electric/Hybrid Propulsion -15 Copyright © 2018,2019, 2021, 2022 by Jerry M. Seltzman. All rights reserve AE4803

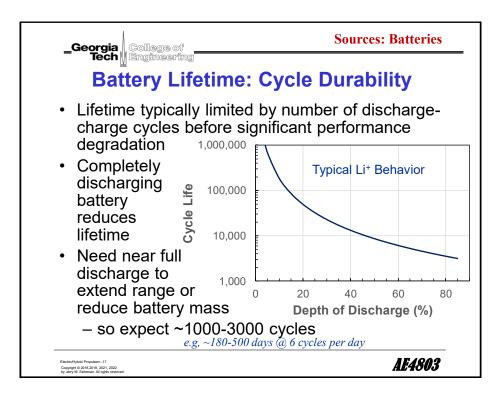
Sources: Batteries

Flight Duration

 Flight duration limited by energy stored in batteries and power usage

$$\Delta t_{flight} \sim e/\dot{e}$$
 (V.11)

 Assuming midrange Li⁺ battery operated at its maximum power capacity for 100% of flight


$$\Delta t_{flight} \sim (0.65 \, MJ/kg)/(0.5 \, kW/kg) = 1300s \cong 22min$$

Assuming avg. power draw is 33% of max

$$\Delta t_{flight} \sim 1 \ hr$$

- So battery powered vehicles (without recharge) limited to short to moderate duration flights
 - especially considering need for power to operate other systems and reserves

Electric/Hybrid Propulsion -16 Copyright © 2018,2019, 2021, 2022 by Jerry M. Seitzman. All rights reserved

Sources: Batteries

Future Improvements

- Various technologies being developed that may show improvement over Li⁺
- Lithium-sulfate batteries (Li-S)
 - commercial systems @ 1.8 MJ/kg
 - theoretical capability of 9 MJ/kg
- Lithium-air batteries: Li anode, "air" cathode (porous material that draws in oxygen from air
 - demonstrated ~6 MJ/kg
 - theoretical limit ~40 MJ/kg

Electric/Hybrid Propulsion -18
Copyright © 2018,2019, 2021, 2022
by Jerry M. Seitzman. All rights reserved

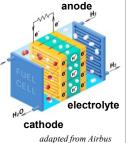
Sources: Batteries

Future Improvements

- Solid-state batteries
 - pure Li metal anode and solid electrolyte (solidstate ceramic)
 - gives high lithium conductivity at room temperature and better stability (so better safety)
 - higher energy density: demonstrated up to 1.8 MJ/kg (NASA SABERS)
 - fast charging/discharging: 0-80% charge in 15 min (at 1.8 MJ/kg) and achieved 800 cycles (Quantum Scape)
- Also zinc-air, aluminum-air, magnesium ions and graphene

Copyright © 2018,2019, 2021, 2022 by Jerry M. Seitzman. All rights reser

AE4803



Sources: Fuel Cells

Fuel Cells (FC)

- Demonstrated in ground and aerospace vehicles
- Electrochemical device like battery
 - but does not require recharging
 - chemical reactants fed to electrodes
 - produce: current, product(s), heat
- H₂ fuel cells
 - produce no CO₂ emissions, just H₂O and heat, which can meet other onboard needs
 - protons migrate through electrolyte to cathode, recombine with O and circuit e

from DLR

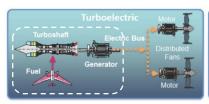
Sources: Fuel Cells

H₂ Fuel Cell Performance

- · SOFC (solid oxide) technology
 - operate at high T (400-700 °C), slow startup (preheating)
- PEMFC (polymer electrolyte membrane)
 - low T operation (50-80 °C), fast startup
 - catalyst separates H into protons and e⁻
- Performance

Metric	Li Ion	SOFC	PEM
ė (kW/kg)	0.1 – 1	0.5 – 2.5	1.5 – 2.5

- H₂ storage
 - while H₂ has high e (>120 MJ/kg), it has low \bar{e} (<1 MJ/L as gas, ~8 MJ/L as liquid) ⇒ large volume requirement
 - requires cryogenics for liquid storage, high pressure for gaseous storage
 - safety concerns

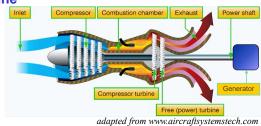

Electrio/Hybrid Propulsion -21 Copyright © 2018,2019, 2021, 2022 by Jerry M. Seitzman. All rights reserve *AE4803*

Sources: Turboelectric

Turboelectric Systems

- Currently architecture of choice for larger EP aircraft (>100 kW) and moderate/long duration flights
- Most commonly examined version is turboshaft engine (fully turboelectric) or turbofan engine (partial TE) with power extracted to produce electricity using an electric generator

Commercial Aircraft Prop. and Energy Systems Research: Reducing Global Carbon Emissions Ch. 4, Electric Propulsion, NAP, 2016


Electric/Hybrid Propulsion -22 Copyright © 2018, 2019, 2021, 2022 by Jerry M. Seltzman. All rights reserve

Sources: Turboelectric

Power Turbine

- Power is extracted from the engine by adding an additional turbine ≡ power turbine
 - also called free turbine
 - drives a shaft uncoupled from LP, HP spools turning compressors (and fan)

- power turbine rpm optimized for thermal power extraction (shaft power) and electric generator operation, while main turbine rpm optimized for engine operation
- lower weight/size power turbine than if used to directdrive turbofan

Electric/Hybrid Propulsion -23 Copyright © 2018, 2019, 2021, 2022 by Jerry M. Seltzman. All rights reserved AE4803

Sources: Turboelectric

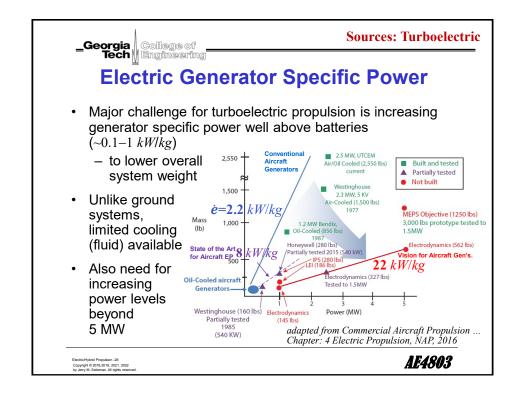
Electric Generators

- Electrical machines use principle of induction between stationary magnetic field (stator) and rotating electromagnet (rotor)
 - generators use mechanical torque to turn rotor and induce current (can be in rotating or stationary coils)
 - motors use current to generate torque to turn rotor
- Voltage level produced by generator based on rpm and main magnetic field strength
- Require cooling (thermal management) to dissipate waste heat from impedance losses
- · Generators can produce AC or DC outputs

Electric/Hybrid Propulsion -24 Copyright © 2018,2019, 2021, 2022 by Jerry M. Seitzman, All rights reserve

_Georgia | College of _Tech | Engineering

Sources: Turboelectric


Current Aircraft Electric Generators

- Used on modern aircraft to provide auxiliary power and more recently as starter generators
 - turns engine over until self-sustained operation
 - then extra windings allow it to switch to electric power generation
 - connected to engine shaft through mechanical gear box (always engaged) http://www.flight-mechanic.com
- Currently meeting more electric requirements on modern aircraft
 - Boeing 787: each engine (GEnx, Trent 1000) has two 250 kVA (kW) variable frequency generators = total of 1 MW electric power generation
 - F-35: PW F135 has two 80 kW gen's.

Boeing.com

ElectrioHybrid Propulsion -25 Copyright © 2018,2019, 2021, 2022 by Jerry M. Seitzman. All rights reserv

Sources: Turboelectric

Electric Generator Improvements

- To increase electric generator power and power density
 - need higher generator RPM
 - · limited by mechanical stresses
 - superconducting materials can reduce electrical losses (resistance in windings)
 - will require cryo-coolers to lower material temperatures where superconducting behavior occurs
 - increasing power generation/distribution voltage
 - currently ~540-600 V

demonstrated in Airbus E-Fan X

- interest in achieving ~ 2-3kV
 - reduces cables mass, can be dominant in overall system specific power
- limited by breakdown voltage at altitude (due to reduced pressure)
- requires better insulation and cabling designs (new wiring harnesses)

Electric/Hybrid Propulsion -27

Copyright © 2018, 2019, 2021, 2022
by Jerry M. Seltzman, All rights reserved

AE4803

Power Electronics

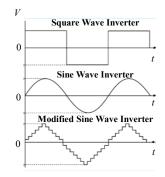
AC-DC Conversion: Rectifiers

- Some advantages if electrical power distributed to motors as DC
 - higher transmission efficiency
 - reduced EM interference
 - cross-talk can occur to wire bundles Full Wave Rectifier with carrying data/control signals
 Full Wave Rectifier with Smoothing Capacitor
 - allows for variable motor speed and decoupled from turbine/generator rpm
- Rectifiers
 - if using AC generator can use rectifier to convert to DC
 - e.g., diode rectifier for each phase

D1
D2
D3
Smoothing
Capacitor
Vac
Wavebum
whthout
Capacitor
Vac
Capacitor
Capacit

/www.electronics-tutorials.ws/diode/diode_6.html

AE4803


Electric/Hybrid Propulsion -28 Copyright © 2018,2019, 2021, 2022 by Jerry M. Seltzman. All rights reserve

Power Electronics

DC-AC Conversion: Inverters

- For DC transmission systems using AC variable speed motors, need to convert DC to AC
- Inverters
 - use fast switches and delay circuits to reverse current flow and emulate AC supply
 - aircraft propulsors generally need high (rotational) speed motors, above 1 kHz
 - combined with high power and high efficiency needs of EP recent efforts have focused on SiC MOSFET electronics

- · high temperature (power/voltage) capability
- device with microchannel coolers capable of ~50 kW/kg

Electric/Hybrid Propulsion -29
Copyright © 2018,2019, 2021, 2022
by Jerry M. Seitzman. All rights reserve

AE4803

_Georgia | College of Tech | Engineering

Electric Motors

Electric Motors

- High conversion efficiency from electrical power to shaft power
 ~90-98% efficiency
- Significant EP advantage: capability of distributed propulsion
 - unlike turbine engines, electric motors have minimal reduction in efficiency and specific power as scaled down in size
- Variable rpm able to optimize propulsor efficiency as function of flight conditions, control requirements
- One moving part ⇒ long lifetime, low maintenance
- Like generators, challenge is to increase motor specific power
 - 5 kW/kg (260 kW) electric motor from Siemens (e-aircraft prop. sold to Rolls)
 - potential for 1 MW scale machines to achieve 8-16 kW/kg
 - on-going efforts in superconducting motors

Siemens

AE4803

Electric/Hybrid Propulsion -30 Copyright © 2018,2019, 2021, 2022 by Jerry M. Seitzman. All rights reserve

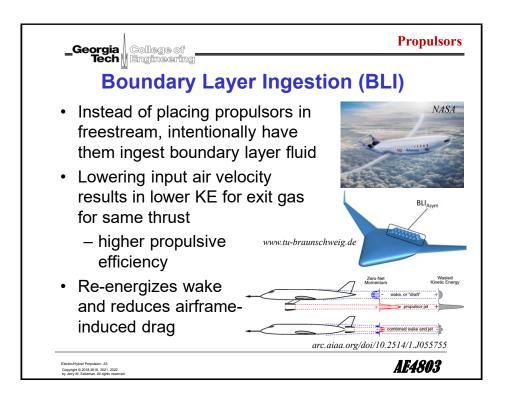
Propulsors

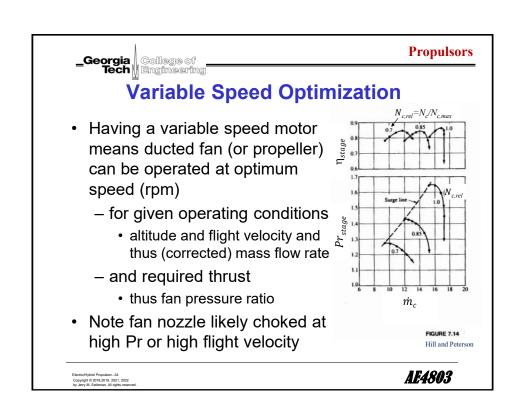
Propulsors/Thrusters

- Goals
 - maximize propulsive efficiency
 - integrate into distributed propulsion for control and aerodynamic efficiency
 - can be used to aid motor cooling
- Common choices
 - propellers
 - ducted fans
 - · typically smaller for same thrust
 - · reduced noise
 - variable speed motor to optimize efficiency at required thrust and flight condition

AE4803

Copyright © 2018,2019, 2021, 2022 by Jerry M. Seitzman. All rights reserv


Propulsors


Distributed and Embedded Propulsion

Compared to turbofans, increases effective bypass ratio

- so for fixed thrust, lowers ONERA required fan pressure ratio and results in increase in propulsive efficiency $(u_e \rightarrow u)$
- If embedded in wing, increases dynamic pressure (higher u) and augments lift production
 - allows smaller wing area for same lift
- Wing acts as downstream stator reducing swirl and increasing fan efficiency

_Georgia | College of Tech | Engineering

EP Summary

- Current battery technology (high weight, low power) limits battery-powered EP to small, short duration vehicles
- With improvements (e.g., higher specific power) in generators & motors and novel vehicle designs
 - turboelectric systems can have impact on reducing CO₂ emissions from larger (e.g., regional) aircraft if overall efficiency improved over current turbofans
 - hybrid turboelectric systems (battery + turbine engine) may have potential for further CO₂ emission reductions (primarily battery for low power portions of flight envelope)

Copyright © 2018,2019, 2021, 2022 by Jerry M. Seitzman. All rights reserv