Motivations for Electric Propulsion

- Environmental considerations
 - low carbon footprint
 - pollutants (NOx, particulates)
 - noise
- Size scaling
 - small vehicles, urban mobility
- Distributed propulsion, airframe integration
 - efficiency, flight controls
- Life and maintenance
- Long duration flights
 - surveillance, communications,…
Nomenclature

- **Electric propulsion**
 - all or part of thrust produced from electrical power
 (e.g., electric motor driving propeller)

- **Hybrid electric propulsion**
 - only part of thrust from electric power
 - example: turbofan combined with propellers driven by battery powered motors

- **Hybrid electric powertrain**
 - multiple sources used to turn same shaft

- **Turboelectric propulsion**
 - turbine engine power either fully or partially diverted to drive elec. gen. for propulsion

Electric Propulsion Components

- **Source**
 - batteries, fuel-cell, solar, electric generator, …

- **Power electronics and transmission**
 - voltage conversion, controls, power distribution, …

- **Motors**
 - conventional, superconducting, …

- **Thruster**
 - propeller, ducted fan, …
Power Sources: Solar

- Convert solar radiation to electricity with photovoltaic (PV) cell
 - direct conversion of EM radiation photon → free electron (current)
- Solar PV typically employ semi-conductors
- Maximum (Carnot) conversion efficiency
 \[\eta_{\text{conv}} \text{(electron/photon)} \approx 95\% \]
- For solar rad. spectrum
 - \[\eta_{\text{conv}} \approx 34\% \]
 single P-N cell (Shockley Queisser limit)
 - \[\eta_{\text{conv}} \approx 50-85\% \]
 stacked cells

\[\frac{W_{\text{max}}}{\text{rad}} = \eta_{\text{conv}} \cdot \frac{Q_{\text{Solar}}}{A_{\text{cells}}} \] (V.8)

- limits maximum continuous thrust available for given size vehicle
- Maximum available radiation is flux at high altitude (solar constant) = 1366 W/m²
- For solar aircraft, maximum \(A_{\text{cell}} \) limited by lifting surface area
Power Sources: Solar

- Example 737 size vehicle
 - wing surface area, 102 m²
 - current CFM-56 engines (2) must supply ~50MW increase in flow KE to meet take-off thrust
- Assuming 100% coverage with PV cells (neglects area between cells, …) and multilayer-PN cell architecture

\[W_{\text{max}} = 0.5 \times (1366 W/m^2)(102 m^2) = 70 kW \]

- So replacing medium scale commercial aircraft with solar electric power requires at least 1000× increase in propulsive efficiency
 - solar viable for low payload, light (unmanned?) aircraft (at high altitude above cloud coverage?)

Power Sources: Batteries

- Currently, leading battery technology for propulsion (and many other applications) is Li ion (Li+)
- During cell discharge
 - oxidation reaction at neg. electrode, Li+ removed from electrode and migrate across electrolyte to pos. electrode
 - To balance charge, equivalent number of e- travel through the external circuit
 - Simultaneous electrochemical reduction reaction proceeds at positive electrode, e- from external circuit and Li+ from electrolyte reform starting material
- During charging, flow of Li+ (and e-) reversed

\[\text{www.jmbatterysystems.com/technology/cells/how-cells-work} \]
Power Sources: Batteries

• Figures of merit for batteries
 – specific energy \((e, \text{MJ/kg}) \)
 \(~0.36-0.9\) \(~45\)
 – energy density \((\bar{e}, \text{MJ/L}) \)
 \(~0.9-2.2\) \(~34\)
 – specific power \((\dot{e}, \text{kW/kg}) \)
 \(~0.25-0.34\) \(~45\) (for medium size jet engine)
 – cycle durability (# cycles)
 \(~1000\)

• Compared to chemical/fuel, batteries store much less energy (per mass or volume) and have much lower specific powers
 – even higher generator efficiency vs. engine thermal efficiency will not make up for this

Power Sources: Batteries

• 737 example
 – 50 MW power requirement at takeoff (TO)
 \[
 \dot{W}_{\text{battery}} = m_{\text{battery}} \dot{e} \geq \dot{W}_{\text{TO}}
 \]
 \[
 m_{\text{battery}} \geq \dot{W}_{\text{TO}} / \dot{e} = 50\text{MW} / (0.33 \text{kW/kg})
 \geq 150,000\text{kg}
 \]
 – maximum gross weight @TO \(~80,000\) kg

• Using current batteries as only energy source limited to low power (thrust) vehicles \(\Rightarrow\) kW class vehicles
 – unmanned (mod. speed) drones, GA aircraft, urban air taxis,…
 – e.g., 10kW \(\Rightarrow\) \(~30\) kg, 15 L \(\sim 1\) ft\(^3\)

neglects mass and volume of insulation, cooling,…
Power Sources: Batteries

- Flight duration limited by energy stored in batteries
- Assuming battery operated at its maximum power capacity for 100% of flight
 \[\Delta t_{\text{flight}} \sim \frac{e}{\dot{e}} \]
- For Li+
 \[\Delta t_{\text{flight}} \sim \left(\frac{0.75 \text{ MW/kg}}{0.3 \text{ kW/kg}}\right) \sim 2500 \text{s} \sim 40 \text{min} \]
- Assuming avg. power draw is 25% of max
 \[\Delta t_{\text{flight}} \sim 2.8 \text{hr} \]
- So battery powered vehicles (without recharge) limited to short to moderate duration flights
 – especially considering need for power to operate other systems and reserves

Power Sources: Turboelectric

- Currently architecture of choice for larger EP aircraft (>100 kW) and moderate/long duration
- Most commonly examined version is essentially turboshift (or turbofan) engine with addition of
 – **elec. generator** connected to (power) turbine
 + **power inverter** (AC to DC – high voltage)
 – also electric transmission bus and motors
 + **power controls and thermal management**

\[+ \text{decouples \ turbine rpm from variable fan/prop rpm} \]
Current Aircraft Electric Generators

- Used on modern aircraft to provide auxiliary power and more recently as starter generators
 - turns engine over until self-sustained operation
 - then extra windings allow it to switch to electric power generation
 - connected to engine shaft through mechanical gear box (always engaged)
- Currently meeting more electric requirements
 - Boeing 787: each engine (GEnx, Trent 1000) has two 250 kVA (kW) variable frequency generators = total of 1 MW electric power generation
 - F-35: PW F135 has two 80 kW gen.

Power Sources: Electric Generators

- Largest challenge for generators for turboelectric propulsion is increasing specific power
 - currently 2.2kW/kg, technology to raise to 22kW/kg
- Unlike ground systems, limited cooling (fluid) available
- Also need for increasing demonstrated power levels beyond 5 MW
Power Sources: Electric Generators

- To increase electric generator power and power density
 - need higher generator RPM
 - limited by mechanical stresses
 - higher power conversion efficiency, lower weight
 - limited by silicon power electronics
 - SiC potential for higher η, voltage and specific power (e.g., 9 kW/kg)
 - increasing power generation/distribution voltage, currently ±270 V (or 540V) – need is for kV’s
 - limited by breakdown voltage at altitude (due to reduced pressure)
 - requires better insulation and cabling designs (new wiring harnesses)

Power Sources: Power Inverters

- Including power inverter (AC to DC conversion) hardware reduces current combined specific power to < 2 kW/kg
 - recent demonstrations of SiC electronics with microchannel coolers that achieve ~50 kW/kg
Electric Motors

- Significant EP advantage: capability of distributed propulsion
 - electric motors have minimal reduction in efficiency (>90-95%) and specific power as scaled down in size
 - also variable rpm to optimize propulsor efficiency (like variable rpm compressor)
- One moving part ⇒ long lifetime, low maintenance
- Like generators, challenge is to increase motor specific power
 - ~ 5 kW/kg (260 kW) electric motor from Siemens (e-aircraft prop. sold to Rolls)
 - higher specific power challenge for viable moderate scale (e.g., regional) EP aircraft
- efforts in superconducting motors

Thrusters/Propulsers

- Need to maximize propulsive efficiency
- Best choices are
 - propellers
 - ducted fans
- Integration into distributed propulsion/aerodynamic designs
EP Summary

- Current battery technology (high weight, low power) limits battery-powered EP to small, short duration vehicles.
- With improvements (e.g., higher specific power) in generators & motors and novel vehicle designs:
 - Turboelectric systems can have impact on reducing CO₂ emissions from larger (e.g., regional) aircraft if overall efficiency improved over current turbofans.
 - Hybrid turboelectric systems have greater potential if better batteries able to cope with much of low power portions of flight envelope.