Turbomachinery

Axial Compressors

Cascade Flow Angles and Velocity Triangles
Compressor Analysis

- From Euler turbomachinery (conservation) equations need to understand change in tangential velocity to relate to forces on blades and power

\[
T = \dot{m} \Delta (r \omega) \\
\dot{W}/\dot{m} = \Delta (u_\omega)
\]

- Analyze cascade flow to find values for \(c_\theta\) (azimuthal or swirl velocity) through a compressor stage

Compressor Cascade Analysis

- Compressor stage consists of moving (rotor) and stationary (stator) blades
 - state change across each blade row
 1\(\rightarrow\)2 rotor
 2\(\rightarrow\)3 stator
- Use flow angles and velocity triangles to visualize transition between reference frames
Compressor (Cascade) Flow Angles

- Recall, two reference frames for fluid velocity
 - engine’s \(\vec{c} \)
 - blade’s \(\vec{w} \)
- Difference due to rotor motion
 \[\vec{w} = \vec{c} - \vec{u} \]
 \[\vec{c} = \vec{w} + \vec{u} \]
- For cascade flow (no radial vel. component)
 - use \(u \) to define +\(\theta \) dir.
 - define angles for each ref. frame (\(\alpha \) and \(\beta \))

To examine airfoil behavior, best to define flow angle in blade’s reference frame

For rotor, use velocities/angles in rotating frame
- \(w, \beta \)
- net flow turning angle,
 \[\beta_1 - \beta_2 \] (II.9)
- will equal \(\phi_r \)
 if flow matches blade angles
 generally \(\neq \), but could be close
Compressor (Cascade) Flow Angles

- For **stator**, use engine reference frame
 - \(c, \alpha \)
 - net flow
 - turning angle, \[\alpha_2 - \alpha_3 \] (II.10)
 - will equal \(\varphi_s \) if flow matches blade angles
 - generally \(\neq \), but could be close

Flow vs. Blade Angles

- How well flow matches blade ("metal") angles is given by
 - inflow: **incidence** \((i)\)
 \[i \equiv -(\beta_1 - \chi_1) \] (rotor)
 \[i \equiv \alpha_2 - \chi_{2s} \] (stator)
 - outflow: **deviation** \((\delta)\)
 \[\delta \equiv -(\beta_2 - \chi_{2r}) \] (rotor)
 \[\delta \equiv \alpha_3 - \chi_3 \] (stator)
Velocity Triangles

- Rotor motion in θ direction, so ref. frame change has no effect on other directions $\Rightarrow \begin{align*}
 \vec{w}_i &= \vec{c}_z i
\end{align*}$ (II.13)

- Rotor vel. constant in cascade flow (like fixed r), and let $|\vec{u}_i| = U$
 $\Rightarrow \begin{align*}
 \vec{c}_i &= \vec{w}_i + \vec{u}
\end{align*}$ as shown here, $w_{\theta} < 0$

- Also have general trigonometric relations

 - e.g.,
 $\begin{align*}
 c_{\theta_1} &= c_i \sin \alpha_i = c_{z_1} \tan \alpha_i \\
 w_{\theta_1} &= w_i \sin \beta_i = w_{z_1} \tan \beta_i \\
 w_{z_1} &= w_i \cos \beta_i = c_{z_1} = c_i \cos \alpha_i
 \end{align*}$ (II.15)

Velocity Triangle Analysis

- Apply (II.12-14) to both blade rows of compressor stage
- 1: rotor inlet
 $\begin{align*}
 (13) \Rightarrow c_{\theta_1} &= c_{z_1} \tan \alpha_1 \\
 (14) \Rightarrow c_{\theta_2} &= U + w_{\theta_2}
 \end{align*}$ (II.16)

- 2: between rotor and stator
 $\begin{align*}
 (13,15) \Rightarrow w_{\theta_2} &= c_{z_2} \tan \beta_2 \\
 (14) \Rightarrow c_{\theta_2} &= U + w_{\theta_2}
 \end{align*}$ (II.17)

- 3: stator outlet
 $\begin{align*}
 (15) \Rightarrow c_{\theta_3} &= c_{z_3} \tan \alpha_3
 \end{align*}$

\[w_{z_3} = c_{z_3}\] (13)
\[c_{\theta_3} = c_i \sin \alpha_i = c_{z_3} \tan \alpha_i\] (15)
Velocity Triangles: Comments

• In axial compressor,
 – the rotor blades increase absolute swirl (push flow downward)
 – the stator blades reduce the swirl (return the flow back towards the axial direction)

Repeated (or Normal) Stage
- velocities at inlet and exit of stage are the same
 \(c_{z3} = c_{z1}, \ c_{\theta3} = c_{\theta1}, \ \alpha_3 = \alpha_1 \)

Zero exit swirl
- no azimuthal velocity at exit of stage \(\alpha_3 = 0 \)

Swirl Velocity Change Example

• Given:
 – Repeating axial flow compressor stage with pitchline radius of 0.50 m, rotational speed of 4050 rpm, inflow axial velocity of 155 m/s and inlet flow angle of 10.2° (in same direction as rotor wheel motion). The rotor blade exit angle is -22.5° and the deviation is 2°.

• Find:
 1. Change in swirl velocity across rotor \((\Delta c_{01,2}) \)
 2. Change in swirl vel. \((\Delta c_{0,2,3}) \) across stator

• Assume:
 – axial velocity constant through stage
Swirl Velocity Change Example

- $\Delta c_{\theta,1,2} = ?$
 - from (14): $c_{\theta_1} = c_{z_1} \tan \alpha_1$
 - from (15): $c_{\theta_2} = U + c_{z_2} \tan \beta_2$
 - $c_{\theta_2} - c_{\theta_1} = U + c_{z_2} \tan \beta_2 - c_{z_1} \tan \alpha_1$
 - $\Delta c_{\theta,1,2} = U + c_z (\tan \beta_2 - \tan \alpha_1)$ (II.18)

- $r = 0.50 \text{m}$, $N = 4050 \text{rpm}$
- $c_{z_1} = c_{z_2} = 155 \text{ m/s}$
- $\alpha_1 = 10.2^\circ$, $\alpha_2 = \alpha_1$
- $\chi_3 = 22.5^\circ$, $\delta_m = 2^a$

Swirl Velocity Change Example

- $\Delta c_{\theta,2,3} = ?$
 - $\Delta c_{\theta,2,3} = c_{\theta_3} - c_{\theta_2}$

- $r = 0.50 \text{m}$, $N = 4050 \text{rpm}$
- $c_{z_2} = c_{z_3} = 155 \text{ m/s}$
- $\alpha_2 = 10.2^\circ$, $\alpha_3 = \alpha_1$
- $\chi_3 = 22.5^\circ$, $\delta_m = 2^a$