Mach Angle and Mach Number

- Looking for relationship between speed of sound and flow speed (or speed of body moving through fluid)
- Consider small body (point) moving in stagnant fluid
 - continuously produces weak pressure disturbances (e.g., fluid having to go around it)
- Disturbances travel outward spherically at sound speed (a)
- Look at disturbances generated at equally spaced time intervals
- Start with body moving with $v << a$
 - e.g., nearly stationary (or moving through incompressible liquid)

\[x = a \times 2\Delta t \]
\[x = a \times \Delta t \]
\[x = a \times 3\Delta t \]

Subsonic and Supersonic Motion

- Now compare two bodies, one moving with $v < a$, subsonic other moving with $v > a$, supersonic

\[t = 1\Delta t \quad t = 2\Delta t \quad t = 3\Delta t \]

\[t = -\Delta t \quad t = -2\Delta t \quad t = -3\Delta t \]

- Subsonic body always behind sound waves launched from previous positions
- Supersonic body moves ahead of previous sound waves
Mach Wave and Mach Angle

- For supersonic flow, can define region where disturbance has had an effect (been “felt/heard”)
- Conical region delineated by tangents to sound wave spheres
- Waves coalesce at edge of cone, produce largest disturbance
 - Mach wave (Mach line)
- Angle between Mach line and body motion, Mach angle
 \[\mu = \sin^{-1}\left(\frac{a_t}{v_t}\right) \]
 (V.A3) \[\mu = \sin^{-1}\left(\frac{1}{M}\right) \]

Mach Cone and Shock Waves

- Same behavior holds if we let body be stationary and flow is moving
- Weak disturbances from presence of body
 - can only be felt inside Mach cone
 - can not be felt “upstream”
- What if finite size body?
 Strong (nonisentropic) pressure disturbances can occur, they coalesce to form shock waves
 \[\beta > \mu \]
 \[\text{will see later that shock angle} \]

AE2010
Flow Regimes

- Mach number is often used to provide criterion for defining different flow regimes
- **Subsonic**: $M < 1$; **sonic** $M = 1$; **supersonic** $M > 1$
- A common demarcation for (aerodynamic) flows

$$M_{\infty} = \frac{v_{\infty}}{a_{\infty}}$$

<table>
<thead>
<tr>
<th>Mach Range</th>
<th>Flow Regime</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{\infty} < 0.3$</td>
<td>"incompressible"</td>
<td>$\Delta p < 5%$ effect</td>
</tr>
<tr>
<td>$0.3 < M_{\infty} < 0.8$</td>
<td>subsonic</td>
<td>moderate ρ changes with v</td>
</tr>
<tr>
<td>$0.8 < M_{\infty} < 1.2$</td>
<td>transonic</td>
<td>flow accel can make local $M > 1$</td>
</tr>
<tr>
<td>$1.2 < M_{\infty} < 3$</td>
<td>supersonic</td>
<td>stronger ρ changes with v</td>
</tr>
<tr>
<td>$3 < M_{\infty}$</td>
<td>hypersonic</td>
<td>very strong shocks</td>
</tr>
</tbody>
</table>

Adiabatic Flow Ellipse

- Another way to look at M effects
- **Energy equation**

$$h_o = h + \frac{v^2}{2} = \text{const}$$

adiabatic/no work stream tube

- **Stagnation** T_o also constant

$$T_o = T + \frac{\gamma - 1}{2} \frac{v^2}{\gamma R} = \text{const}$$

Stagnation speed of sound
(no kinetic energy left, $v=0$)

$$\frac{2}{\gamma - 1} \frac{\gamma R T + v^2}{\gamma R} = \text{const}$$

$$(V.A4) \quad \frac{2}{\gamma - 1} a^2 + v^2 = v_{\max}^2 = \frac{2}{\gamma - 1} a_o^2$$

Maximum velocity possible
(no thermal energy left, $T=0$)
Adiabatic Flow Ellipse (con’t)

- Transition from low speed (a_o) to high speed (v_{max})

$$v_{\text{max}}^2 = v^2 + \frac{2}{\gamma - 1} a^2 = \frac{2}{\gamma - 1} a_o^2$$

<table>
<thead>
<tr>
<th>Regime</th>
<th>Description/Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>incomp.</td>
<td>$v << a$, $da << dv$, little change in $a(T)$</td>
</tr>
<tr>
<td>subsonic</td>
<td>$v \leq a$, M changes primarily to changes in v</td>
</tr>
<tr>
<td>transonic</td>
<td>$</td>
</tr>
<tr>
<td>supersonic</td>
<td>$v > a$, M changes through substantial changes in v and $a(T)$</td>
</tr>
<tr>
<td>hypersonic</td>
<td>$v >> a$, $dv << da$, M change mostly due to $a(T)$ changes</td>
</tr>
</tbody>
</table>

AE2010