

Mach Angle and Mach Number

- Looking for relationship between speed of sound and flow speed (or speed of body moving through fluid)
- · Consider small body (point) moving in stagnant fluid
 - continuously produces weak pressure disturbances (e.g., fluid having to go around it)
- Disturbances travel outward spherically at sound speed (a)
- Look at disturbances generated at equally spaced time intervals
- Start with body moving with v << a - e.g., nearly stationary (or moving
 - through incompressible liquid)

AE2010

Subsonic and Supersonic Motion

• Now compare two bodies, one moving with $\mathbf{v} < \mathbf{a}$, subsonic other moving with v > a, supersonic

- Subsonic body always behind sound waves launched from previous positions
- Supersonic body moves ahead of previous sound waves

Copyright © 2001-2002, 2018, 2020 by Jerry M. Seitzman All rights reserved.

AE2010

Flow Regimes

- · Mach number is often used to provide criterion for defining different flow regimes
- Subsonic: M < 1; sonic M = 1; supersonic M > 1
- A common demarcation for (aerodynamic) flows

 $M_{\infty} = v_{\infty}/a_{\infty}$

Mach Range	Flow Regime	Features
M_{∞} <0.3	"incompressible"	Δρ < 5% effect
$0.3 < M_{\infty} < 0.8$	subsonic	moderate ρ changes with v
$0.8 < M_{\infty} < 1.2$	transonic	flow accel can make local $M > 1$
$1.2 < M_{\infty} < 3$	supersonic	stronger ρ changes with v
$3 < M_{\infty}$	hypersonic	very strong shocks

AE2010

Adiabatic Flow Ellipse

- Another way to look at *M* effects
- Energy equation $h_o = h + \frac{v^2}{2} = const \quad adiabatic/no \text{ work stream tube}$
- Stagnation T_o also constant

from IV.24
$$T_o = T + \frac{\gamma - 1}{2} \frac{v^2}{\gamma R} = \text{const}$$

$$\frac{2}{\gamma - 1} \gamma R T + v^2 = \text{const} \qquad \text{Stagnation speed of sound}$$
(V.A4)
$$\frac{2}{\gamma - 1} a^2 + v^2 = v_{\text{max}}^2 = \frac{2}{\gamma - 1} a_o^2$$
Maximum velocity possible (no thermal energy left, $T = 0$)

Copyright © 2001-2002, 2018, 2020 by Jerry M. Seitzman All rights reserved.

AE2010

